An Investigation on Performance of Shrouding a Small Wind Turbine with a Simple Ring in a Wind Tunnel

Authors

  • Barat Ghobadian Department of Agriculture, Tarbiat Modares University, Tehran, Iran
  • Esmail Mahmoodi Department of Agricultural, Shahrood University OF Technology, Shahrood, Iran
Abstract:

Ducted wind turbines are a kind of small wind turbine having a diffuser or any other shape around the rotor which increases the air flow through the blades and absorbs more power. In the present study, a small wind turbine was ducted with a relatively simple ring and its performance was investigated in a wind tunnel. The duct is shaped using rolling steel sheets on a sloping surface and finally fabricated in double-glazed surfaces. The turbine utilizes polyester resin glass fiber-armed composite hollow blades. Bare turbine produces 165 watts in its highest power generation mode which can reach 282 watts when it is ducted. The evaluation of the system in the wind tunnel showed that the power generation of the ducted system compared to a conventional turbine was 14 % higher on average. Furthermore, the rotor speed of the ducted turbine was 45 % higher than the bare one which increases the tip speed ratio (TSR). In this study, TSR increment raised the absorbed power in the developed wind turbine.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Wind tunnel tests of a free yawing downwind wind turbine

This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The to...

full text

Performance improvement of a wind turbine blade using a developed inverse design method

The purpose of this study is to improve the aerodynamic performance of wind turbine blades, using the Ball-Spine inverse design method. The inverse design goal is to calculate a geometry corresponds to a given pressure distribution on its boundaries. By calculating the difference between the current and target pressure distributions, geometric boundaries are modified so that the pressure di...

full text

Atmospheric Boundary Layer Wind Tunnel Applications in Wind Turbine Siting

Atmospheric boundary layer wind tunnels (ABLWTs) have been used for 40 years to simulate the interaction of the wind and earth in the lowest few hundred meters of the atmosphere. ABLWTs are well-suited for investigating flow in complex terrain and have different strengths and weaknesses than numerical modeling. There are a wide variety of applications, including performing wind resource assessm...

full text

Effect of Reduced Frequency on the Unsteady Aerodynamic Performance of a Wind Turbine Blade Section

The blades of wind turbines are the most important parts in producing power output. In this study, a section of a 660 KW wind turbine blade will be installed in Iran in near future was tested in a wind tunnel. In addition to steady tests, various unsteady tests including the effects of reduced frequency, mean angle of attack, and amplitudes were carried out. The preliminary results show strong ...

full text

Performance improvement of a wind turbine blade using a developed inverse design method

The purpose of this study is to improve the aerodynamic performance of wind turbine blades, using the Ball-Spine inverse design method. The inverse design goal is to calculate a geometry corresponds to a given pressure distribution on its boundaries. By calculating the difference between the current and target pressure distributions, geometric boundaries are modified so that the pressure di...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 4

pages  49- 56

publication date 2019-06-25

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023